An Intrinsic Hamiltonian Formulation of Network Dynamics : Non-standard Poisson Structures and Gyrators
نویسنده
چکیده
The aim of this paper is to provide an intrinsic Hamiltonian jormulation of the equations of motion ofnetwork models of non-resistive physical systems. A recently developed extension of the classical Hamiltonian equations of motion considers systems with state space given by Poisson manifolds endowed with degenerate Poisson structures, examples of which naturally appear in the reduction of’ systems with symmetry. The link with network representations of non-resistive physical systems is established using the generalized bond graph formalism which has the essential feature of symmetrizing all the energetic network elements into a single class and introducing a coupling unit gyrator. The relation between the Hamiltonian formalism and network dynamics is then investtgated throqh the representation of the invariants of the system, either captured in the degeneracy of the Poisson structure or in the topological constraints at the ports of the gyrative type network structure. This provides a Hamiltonian formulation of dimension equal to the order of the physical system, in particular, for odd dimensional systems. A striking example is the direct Hamiltonian formulation of electrical LC networks.
منابع مشابه
An Intrinsic Hamiltonian Formulation of the Dynamics of LC-Circuits
First, the dynamics of LC-circuits are formulated as a Hamiltonian system defined with respect to a Poisson bracket which may be degenerate, i.e., nonsymplectic. This Poisson bracket is deduced from the network graph of the circuit and captures the dynamic invariants due to KirchhoWs laws. Second, the antisymmetric relations defining the Poisson bracket are realized as a physical network using ...
متن کاملPort-Hamiltonian formulation of shallow water equations with coriolis force and topography∗
Port based network modeling of complex lumped parameter physical systems naturally leads to a generalized Hamiltonian formulation of its dynamics. The resulting class of open dynamical systems are called “Port-Hamiltonian systems” [12] which are defined using a Dirac structure, the Hamiltonian and dissipative elements. This formulation has been successfully extended to classes of distributed pa...
متن کاملReduced Lagrangian and Hamiltonian Formulations of Euler–yang–mills Fluids
The Lagrangian and Hamiltonian structures for an ideal gaugecharged fluid are determined. Using a Kaluza–Klein point of view, the equations of motion are obtained by Lagrangian and Poisson reductions associated to the automorphism group of a principal bundle. As a consequence of the Lagrangian approach, a Kelvin–Noether theorem is obtained. The Hamiltonian formulation determines a non-canonical...
متن کاملHamiltonian Approach to Poisson Lie T-Duality
The Hamiltonian formalism offers a natural framework for discussing the notion of Poisson Lie T-duality. This is because the duality is inherent in the Poisson structures alone and exists regardless of the choice of Hamiltonian. Thus one can pose alternative dynamical systems possessing nonabelian T-duality. As an example, we find a dual Hamiltonian formulation of the O(3) nonlinear σ-model. In...
متن کاملEffects of asymmetric stiffness on parametric instabilities of rotor
This work deals with effects of asymmetric stiffness on the dynamic behaviour of the rotor system. The analysis is presented through an extended Lagrangian Hamiltonian mechanics on the asymmetric rotor system, where symmetries are broken in terms of the rotor stiffness. The complete dynamics of asymmetries of rotor system is investigated with a case study. In this work, a mathematical model is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001